
Corrections for Nonlinear Vector Network Analyzer Measurements
Using a Stochastic Multi-Line/Reflect Method

Donald C. DeGroot+, Yves Rolain*, Rik Pintelon*, and Johan Schoukens*

+National Institute of Standards & Technology, MC 818.01, 325 Broadway, Boulder, CO 80305 USA†

*Vrije Universiteit Brussel, Dept. ELEC, Pleinlaan 2, Bldg. K, 6th Floor, B-1050 Brussel, BELGIUM

Abstract  —  A new 16-term statistical calibration has
been developed for the correction of vector network
analyzer (VNA) data. The method uses multiple
measurements of generic transmission line and reflection
standards. Using a functional model of the system and
transmission line standards, we apply a nonlinear least-
squares estimator to simultaneously optimize the
correction terms in the measurement model and the
propagation constant. The method provides estimates of the
uncertainty on each of the parameters using the final
Jacobian. This paper shows for the first time an application
of the new calibration to a commercial nonlinear VNA, plus
quantitative statements regarding the quality of the
parameters.

Index Terms  —  Measurements, Calibrations, Vector
Network Analyzer, Propagation Constant.

I. INTRODUCTION

In this paper, we apply a newly-developed statistical
calibration technique to data acquired with a commercial
nonlinear vector network analyzer (NVNA). The method
uses a 16-term scattering-parameter model1 and a
convenient nonlinear-least-squares optimization process,
that is easily implemented using readily available software
tools. Using multiple measurements of uniform
transmission line and reflection standards, we minimize the
residuals in a semi-linear system of equations derived from
noisy measurements. We attain estimates for each of the
15 unique coefficients in the two-port correction model
while concurrently optimizing the transmission-line
propagation constant γ , the key parameter in the model
descriptions of transmission-line standards.

The need for sound measurement assurance is the
prime motivator for this work. This new method provides
estimates for the uncertainty in all parameters along with a
comparative test for success which represent the salient
features of the current work. The microwave measurement
community is looking more and more to statistical
methods [1-5] in order to improve scattering-parameter (S-
parameter) measurements beyond the tradition of closed-

                                                
1 We refer to the 16-term two-port S-parameter model, recognizing

that the rank of such a correction matrix is no greater than 15.
†Work supported by the U.S. Government, not subject to U.S.  copyright.

form, deterministic approaches. We are not only
improving the S-parameter corrections this way, but we
are able to determine quantitative measures on the quality
of corrected data.

While it is true that commercial vector network
analyzers (VNAs) can measure the S-parameters of
microwave circuits with a high degree of precision,
including cross-channel coupling of less than -60 dB, the
need for full 16-term VNA calibrations is driven by a set
of specific applications and metrology lab requirements.
One application is the calibration of wide-band network
analyzers used for nonlinear circuit characterization. Out of
necessity, these instruments provide wide-bandwidth (> 4
MHz) measurement channels resulting in an increase in
measurement noise of more than three orders of magnitude
above conventional VNAs. Another application is on-
wafer millimeter-wave measurements where probe-to-probe
coupling can exceed -40 dB. Of interest to the authors is
the need to quantify the quality of data in metrology-grade
laboratories. These and most R&D laboratory applications
will benefit significantly from statistical estimators and
methods that can track measurand variability with changes
in noise, model equations, and measurement conditions.

In the following sections of this paper, we briefly
describe a straightforward 16-term estimator and
demonstrate its application to an NVNA. We present new
results including estimates of uncertainty in the error-
correction parameters.

II. CALIBRATION METHOD

The proposed method extends the stochastic calibration
framework of Van Hamme and Vanden Bossche [1] and
Van Moer et. al. [2,3] by applying a statistical, least-
squares estimation to the Multiline TRL problem [6].
Here, we consider a general mixture of standards where
some are described by wave propagation along uniform
two-conductor waveguides. The desire to mix standard
types is similar to the goals of Van Moer and Rolain [2]
and Williams et. al. [4,5]; we report here on complete 16-
term solutions and distinct estimation methods.
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The method treats the two-port VNA case generically,
without associating the terms with specific physical
features of the instrument. The 16-term, complex-valued
correction model is defined as:
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where a and b are the complex wave amplitudes, the
superscript D indicates the wave-variables at the device-
under test (DUT) reference planes, and the superscript V

denotes the ideal noise-free data inside the VNA.
While (1) uses wave-variable data accessible to NVNAs,

we identify θθθθ here as the system that links the instrument-
transformed S-parameters to the actual S-parameters of the
DUT. Expressing the relation b  = Sa , we can rewrite the
DUT to VNA model as
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where I2 is the 2x2 block identity matrix, and Θxy are the
four block matrices of θθθθ in (1). This is the functional
model for the two-port system which is taken to be exact
in the absence of noise.

The first goal of the current statistical method is to
identify a quasilinear model f where measurement noise in
S will enter linearly. This is one of the key advantages of
this calibration method. For this purpose, we will use
multiple transmission-line standards defined in terms of the
propagation constant γ . In the presence of an additive
noise perturbation, we reformulate the model for SV as

S SM D
nf e= ( )[ ] +θθ, γ , (3)

where SM now represents an individual measurement with
complex noise en. The SM are formulated in terms of the
measured a and b vectors in forward and reverse instrument
states following Van Hamme and Vanden Bossche [1].

The deterministic model equations for the transmission
line and offset reflection standards are written in terms of
γ . Lumped-element standards can also be used, but they
require their own frequency-dependent models.

Considering S-parameters defined in terms of the
transmission-line characteristic impedance Zc, the line
model is represented by
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where l is the distance between the measurement reference
planes. For offset reflections, the defined S are given by
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where l is the distance between the reflection element and
the nominal reference plane location, and ΓR is the
reflection coefficient of the termination (ΓR = -1 for an
ideal short circuit).

Using Kronecker multiplication defined by Brewer [7],
we can rewrite the functional model in (2) as the basis of a
system of equations,

S I I SD M( )[ ]⊗ −[ ]{ } { } =
T

2 2 0vec θθ , (6)

where the vec operator forms a vector by stacking
subsequent columns of θθθθ on top of each other.

For each standard, there will be four rows (equations) in
the system. In practice, we perform repeated measurements
of each standard in the calibration kit, making at least six
connector repeats. Instead of introducing four new rows for
each repeat, we take the mean value of the measurements
and the covariance of the mean into the estimator.

Because we are estimating model parameters in the least-
squares sense, we cast the equation residuals as

e y H= − ( )γ θθ   v . (7)

Here, the matrix H is a collection of measurement and
modeling terms from (6) less one column of measurements
-y , that gets moved when normalizing the model with
θ44 = +1.

Note that residual errors in (7) are nonlinear in the
parameters when we include γ as a parameter. The method
applies a nonlinear least-squares minimization of a
weighted cost function Lkw that is quadratic in the
measurements. It minimizes

Lkw e= −e C eH 1 , (8)

where H denotes the Hermitian, or complex conjugate
transpose, and C e is the covariance in e due to
measurement noise.

Since there is no a priori assurance that the calibration
problem will involve a globally convex cost function, we
devote careful attention to acquiring good starting values
for the 15 correction terms plus the propagation constant γ
of the transmission-line standards.

The starting value for the propagation constant is
derived from the uncorrected standard measurements and a
modification of the Multiline method [6] that avoids
problems associated with root selection. With this starting



value for γ , we define the SD of each transmission line
standard and use a linear-least-squares estimator to generate
the starting values for θθθθ.

With these excellent starting values, we apply a
Levenberg-Marquardt modification of the Gauss-Newton
method following procedures described in [8], and optimize
the parameters at each frequency point independently. To
approach a minimum variance estimate, the method uses
the inverse of the measurement noise covariance Cm in
weighting the equation residuals. In the absence of the
exact measurement noise covariance matrix, the method
uses an estimate Cm,est obtained from the repeated
measurements of each standard. Typically, these repeated
data include both electrical measurement noise and the
contact variance.

At the end of the iterative optimization process, the
method produces  estimates of parameters θθθθest and γ est. It
then estimates a parameter uncertainty using the final
Jacobian matrix to represent the residual variability of
these parameters about their optimized values.

III. APPLICATION TO NVNA DATA

Using extensive simulations of random measurement
noise of the same covariance as that observed in our
repeated measurements for each standard, and assuming an
ideal VNA model, we demonstrated the validity of the
method by recovering the expected parameter estimates and
the expected cost-function distribution. Comparisons of
the propagation constant data with the Multiline method
showed differences of less than 0.4% over the frequency
band of 1–40 GHz.

With quantifiable confidence in the method, we applied
it to a nonlinear vector network analyzer. Here, we
collected uncorrected a and b  vector measurements for 6
repeated connections to each of the 6 line and 2 reflect
standards defined in Table I. We formulated the mean SM

and covariance values and ran the optimization software on
these data.

TABLE I
Definition of Line & Reflect Standards

Coplanar Waveguides, Au Metalization on Alumina

Standard Length/Offset (mm)

Line 1 0

Line 2 0.5

Line 3 2.135

Line 4 3.2

Line 5 6.565

Line 6 19.695

Reflect 1 0/0

Reflect 2 0/1.5

The data in Fig. 1 show the estimated value of the
propagation constant expressed as the real part of the
effective relative permittivity (εr,eff = -γ2c2/ω 2). We also
compared these data to values obtained from VNA
measurements of the same standards using the NIST
Multiline method, and plotted the difference between the
two methods in Fig. 1. The two methods agree well from
just under 1 GHz to 40 GHz. The significance of the
increased difference at low frequencies is yet to be explored.

Figure 2 gives an estimate of the uncertainty in γ est as a
function of frequency. Since the propagation constant is a
complex function, we report the standard deviation σ to be
that of a circularly Gaussian-distributed error about the
estimate. This gives the standard deviation of |γest|. Above
6 GHz, we see a frequency behavior that follows the
observed trends in the  measurement noise covariance, and
also note increased uncertainty at low frequencies due to
the limited phase difference information in finite line
lengths.

The estimates of all 15 correction coefficients are plotted
in Fig. 3; estimates of their uncertainty are shown in
Fig. 4. The upper three curves in Fig. 3 represent the on-
diagonal θi=j parameters, and the middle band show terms
related to the instrument mismatch, while the lower band
of curves show the cross-talk terms.

The uncertainty in the correction parameters is again
represented as the σ of a circularly Gaussian error in
Fig. 4, showing that uncertainty increases with frequency.
Figures 3 and 4 reveal an important point: ignoring cross-
talk terms in the correction model may introduce errors
that are bigger than the level of measurement uncertainty
attainable in good calibration methods.
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Fig. 1. Estimated propagation-constant parameter
of transmission-line standards from NVNA data compared to
VNA results acquired with the Multiline method. Data are
shown as real part of effective relative permittivity εr,eff .
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Fig. 2. Estimate of the uncertainty in |γest|.
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Fig. 3. Nonlinear least-squares estimate θθθθest : upper
curves give θi=j; middle curves give θ13, θ31, θ24, and θ42; lower
curves give the cross-diagonal terms.
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Fig. 4. Uncertainty in the correction parameters
represented as the standard deviation of the magnitude for each
of the 15 terms in θθθθest .

IV. CONCLUSIONS

This paper has presented a new statistical VNA
calibration method based on repeated measurements of
multiple transmission-line and reflection standards. By
applying a convenient least-squares optimization process,
the method estimates the 15 unique correction coefficients,
plus an optimized propagation-constant estimate for the
transmission-line parameter. We demonstrated, for the first
time, an application of this method to a commercial
nonlinear vector network analyzer, and derived estimates of
the uncertainty in the model parameters.

These statistical methods provide important insight into
the quality of RF network measurements to both
calibration laboratories and research and development
teams, as well as limitations in a given calibration kit.
They also offer important improvements in the methods of
correcting VNA errors.
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